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Abstract

In a recent monograph, Deift and McLaughlin considered the continuum limit
of the Toda lattice and solved the problem using perturbation techniques, such
as the Wentzel-Kramers—Brillouin (WKB) method. We present an alternative
approach based on the analytic theory of discrete orthogonal polynomials.
The method is based on some extremal problems in the theory of logarithmic
potentials and relies on some results for the asymptotic theory of orthogonal
polynomials with a discrete orthogonality measure.

PACS number: 05.50.+q

Mathematics Subject Classification: 42C05, 37K10

1. Introduction

In a recent monograph, Deift and McLaughlin [4] considered the continuum limit of the Toda
lattice and solved the problem using perturbation techniques, such as the Wentzel-Kramers—
Brillouin (WKB) method. We present an alternative approach based on the analytic theory of
discrete orthogonal polynomials [5,6, 8,9, 12].

The finite Toda lattice can be analysed using the finite chain of differential equations

dak
diN =By — b y) k=1,2,....N
()
dbry  brwn
" ZT(akH,N_ak,N) k=12,...,N—-1
with by y = by y = 0 and with initial data
arn(0)  brn(0) 1 <k<N. 2
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The Cauchy problem consists of finding ai n (), by v (t) for t > 0 satisfying the differential
equations (1) with initial data (2).
The continuum limit is when the limits
lim ar.n(0) = a(x) lim br.n(0) = b(x) 3)

N—o00,k/N—x N—o00,k/N—x

exist uniformly for 0 < x < 1, and in this case we want to obtain the limits

lim  an(Nt) =a(x, 1) lim  bey(Nt) =b(x,t) (4

N—o00,k/N—x N—o00,k/N—x

for0 < x < l and ¢ > 0. Under appropriate conditions these limits a(x, t), b(x, t) satisfy the
system of partial differential equations

9 ab
7 =25
X
Bb_baa ®)
ar 2 0x

with initial conditions a(x, 0) = a(x), b(x, 0) = b(x), and boundary condition (0, 1) =0 =
b(1,1). If we put

a(x,t) =a(x,t) —2b(x, 1) Bx,t) =a(x,t)+2b(x,1t) (6)
then these functions satisfy

o B—a du

9t 4 ox
B _p-wdp (7
ar 4 dx

This system is called the continuum limit of the Toda lattice. It gives a nice example of a model
hyperbolic PDE, which for « = 0 reduces to the well-known inviscid Burgers equation.

The finite discrete system (1) was solved by Moser [10, 11] and the solution can be
presented in terms of discrete orthogonal polynomials. Define the Jacobi matrix

ain(@) bin(@)

bin(t) axn(t) Dbyn(2)

byn(@) azn()  b3n()

Ly(@) = ®)

byan(®) an—1n@) by-1n()
by-1n(@)  an ()
with eigenvalues A; y(t) (j = 1,2,..., N). This Jacobi matrix gives a finite system of
orthonormal polynomials through the recurrence relation
AN (s 1) = b N () prat, v (s 1) + agrr N O prov (A, ) + b v () pr—1,n (A, 1) )
forO <k <N —2,and

pNNA ) = —an NO)py—in(A, 1) —by_ i n(E)pn_a N (X, 1)

with initial conditions poy = 1 and p_; y = 0. These polynomials (in the variable
A) are orthonormal with respect to a discrete measure y supported on the eigenvalues
{Ajn(@):j=1,2,..., N}, which are precisely the zeros of py n (%, 1):

N

ZPk,N()»j.N)Pe,N()»j,N)wj,N =S¢ 0<k,E<N-1 (10)
=
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where
! (11)
WiN=SN-T 2 .
> k=0 pl%,N()‘f,N)
For convenience we will use the discrete measure
N
un O t) = wj v (8 — Ajn(t) (12)
j=1
so that the orthonormality (10) is written as
/Pk,N(?», Dpen, ) duy, 1) = e 0<k < N-1. (13)

Theorem 1 (Moser). Ifayy e R(1 <k < N)andbyy >0(1 <k < N —1), then

(i) The system (1) has a global solution for any t > 0.
(ii) The solution can be obtained by the following procedure:
o First find the eigenvalues A j y (1 < j < N) and the weights w; y (1 < j < N) for
the Jacobi matrix Ly (0) containing the initial data (the direct spectral problem).
o Take the evolution of the spectral data

dr
ety N
win({) = ————
! Z/ICV=1 et wg N
so that
Mduy(, 0
dun(h,r) = S SN 0) (14)

Jerdun(y,0)
e Obtain the Jacobi matrix Ly (t) for uy (X, t) (the inverse spectral problem), e.g., by
expanding the rational function

/ dun(, 1)
Z—=A
into a terminating continued fraction (J -fraction).

Thus the procedure of integrating the Toda equations (1) is given by the following scheme

Toda equation (1)

operator operator

dataatt —0 data at ¢
direct inverse
spectral spectral
problem ) problem

evolution of
spectral data (14)
spectral spectral
data att — 0 data at ¢

2. Operator and spectral data for the continuum limit

For the continuum limit (5) we take the operator data as a(x), b(x) € C[0, 1] (ora(x), B(x) €
C[0, 17; see (6)). For the finite discrete problem the operator data are

ar,ny = a(k/N) bey = b(k/N).
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It is clear that
lim A[xN],N = a(x) lim b[xN]AN = b(x) (15)
N—o00 N—o00 '

holds uniformly for x € [0, 1], where [x N] is the greatest integer less than or equal to x N.

The spectral data for the discrete finite system A; v, w; v (j =1, ..., N) are collected in
the discrete measure 1. We define the spectral data for the continuum limit as the measure
o and the function Q € C[supp(o)] satisfying

.
o) legnooNZ(S(,\—x,,N) (16)
j=1

lim max
N—00 I<j<N

1
Nlog wj,N — QOU',N) = 0 (17)

3. Inverse problem for the continuum limit

The inverse spectral problem for the continuum limit is to find the operator data a(x), b(x)
if the spectral data (o, Q) are given. In terms of the discrete orthogonal polynomials the
inverse problem is to find the limits (15) of the coefficients of the recurrence relation (9)
of the orthonormal polynomials satisfying (13) by means of information about the limit
behaviour (16), (17) of the orthogonality measure. This problem can be solved by finding
appropriate asymptotics for the orthogonal polynomials. The basic known result in this
direction was obtained by Rakhmanov [12] for O = 0 and extended for a general class of
functions Q by Dragnev and Saff [5, 6] (see also [8]). It is more convenient to work with
monic orthogonal polynomials Py y(A) = A* + - - - which satisfy the recurrence relation

APy N(A) = Proi v (D) + age v Prov (L) +b1%,NPk—1,N()») (18)

with PO,N =1 and Pl,N =A— aiN.

Theorem 2 (Rakhmanov, Dragnev-Saff). Ifthe orthogonality measures (12) for the families
of discrete orthonormal polynomials (10) satisfy the limiting conditions (16) and (17), together
with a technical condition on the eigenvalues (a ‘separation condition’):

|)"j+1,N_)‘j,N|>O(1/N) kzl,,N—l

then the following asymptotic formula
1
lim | Ppovyv (2)]'" = exp (‘—Vn <z>> (19)
N—oo X

holds uniformly for z belonging to compact sets of C \ supp(z,) and x € [0, 1]. Here

1
Vi(z) = /log EEY dt(n)

is the logarithmic potential of a measure T and the family of measures t,, x € [0, 1] solves the
extremal problem of minimizing the logarithmic energy with external field Q given by (17) for
measures [ of total mass x, constrained by the measure o given in (16), i.e.,

Wo(ty) = inf w 20
0(Tx) ot o) (20)

with

1
Wotn) = [ [ og = dnw auto - [ 0w duco).
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The separation condition can be weakened considerably (see [1]) but this is not so relevant in
our analysis. The family of extremal measures t,, x € [0, 1] satisfies the following equilibrium
condition (see [5,6,8,12]):

Theorem 3 (Rakhmanov, Dragnev-Saff). The solution of the extremal problem (20) exists
and is unique. Furthermore this solution is characterized by the following relations

= Yy A € supp(o — 1)
Ve (W) — 100 =» A € supp(o — 7,) N supp(ty) == I, (21)
< A € supp(zy).

This means that, for each x € [0, 1], the equilibrium conditions (21) uniquely define the
extremal constant y, and the extremal measure 7, for the problem (20).
If the set X, for the extremal measure t, is an interval:

Xy = [a(x), ()] (22)

then, as we shall show later, the right-hand side of the asymptotic formula (19) contains the
solution of the direct problem. If the limits of the recurrence coefficients (15) exist, then they
are given by

a(x) + B(x) Bx) —a(x)

lim by, =
2 N—oo [¥NL.N 4

However, to justify the existence of these limits, we need to have a stronger asymptotic formula
for the orthonormal polynomials. Actually we need an asymptotic formula for the ratio of two
consecutive discrete orthogonal polynomials. Note that the limit of the ratio of two consecutive
terms of a sequence does not always exist when the nth root of the sequence exists, but if the
limit of the ratio exists, then it is related to the limit of the nth root.

The ratio asymptotics for discrete orthogonal polynomials is still an open problem. The
corresponding result for polynomials orthogonal with respect to a continuous measure on an
interval was obtained by Rakhmanov [13]. It would be useful to prove an analogous result
(under appropriate conditions) for the discrete case.

In this paper we give a conditional solution of the inverse problem in the following sense:

(23)

lim apyy =
N—o00

Theorem 4. If the continuum limit operator data (15) exist, then the limit functions a(x) and
b(x) can be obtained from the continuum limit spectral data (16) and (17) by means of (21)-
(23).

Before stating a conditional theorem about the ratio asymptotics of the discrete orthogonal
polynomials, we rewrite the formula for the nth-root asymptotics (19) using the following
representation of the extremal measure 7.

Theorem 5 (see [2,3,8]). The density of the extremal measure is given by

) = /0 w3, (1) dy (24)

where wiq g is the usual density of the equilibrium measure (Chebyshev measure) for the
interval [a, B]

1 1

Wie,p1(A) = ;m A € [a, B].
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The formula (24) for the unconstrained extremal measure was first obtained by Buyarov
in [2] (for details, see [3]). It was obtained for the constrained extremal measure under rather
strong restrictions (see theorem 9.2 from [8] and [4]). It is still an open problem to prove (24)
in a general setting. As a corollary of theorems 3 and 5 we have

M n 1 *
lim | Py v (2)]" = exp ( T x f Vios, (2) dy) (25)
N—oo X 0

uniformly on compact subsets of C \ supp(z,) and x € [0, 1].
Now we are ready to state and prove a conditional theorem about ratio asymptotics.

Theorem 6. If the orthogonality measures (12) for the families of discrete orthogonal
polynomials (10) satisfy the conditions of theorem 2, with the result that the asymptotic
Sformula (25) is valid, and if uniformly for z belonging to some compact set K and for x € [0, 1]
the limit of Pyxnj—1,n(2)/ Pxnyn (2) exists when N — 00, then this limit is given by

Pani-1.8(2)
————— =exp (U, (2) (26)
N—oo Py n(2) (Vor, @)
locally uniformly for z € C \ supp(ty) and x € (0, 1), where U, = V,, + iV, is the complex
potential of the measure w.

Proof. We just give an outline of the derivation of (26) from the existence of the limit on the
left-hand side of (26) and from (25). We have for n = [xN]

1 1< P,y
—log | P; =:§® —
= gl W|,1 4&4W

n=1

Using the notation X = /N we have from (25)
1 X
dx—>——/ Vi, dx as N — oo.
0

1 / g ‘ Pieny v

= | log|——

x Jo Pieni-1n x
Therefore if the limit on the left-hand side of (26) exists, then it is equal to the right-hand side
of (26). O

Finally, from the ratio asymptotics (26) we can deduce the formulae for the limits (15) of
the coefficients of the recurrence relation (9).

Theorem 7. If (26) holds, then

lim a4y =a(x) = PO
nsocon/N—xelo,1] "N 2

lim byn = b(x) = M.
n—oo,n/N—x¢€[0,1] ’ 2

Proof. The limits above are an immediate corollary of the ratio asymptotics (26) and recurrence
relation (18)

Ponin@) 5 Pain(@)

Pin@ " Pan(@)
Letting N — oo here and taking into account that for the equilibrium measure of the interval

2y = [ox), B(x)] it is known that

I — apyl,N =

- —a)?
“M—M%QD=¢@yzzza+ @4@ e
s BDta) 6 a6

-t 8-

with the result that 2 — (z — a)® + b*> = 0, we obtain the desired formulae. O



Orthogonal polynomials and the Toda lattice 10633

4. Evolution of the spectral data

To find the evolution of the spectral data for the continuum limit, we substitute in the
definitions (16) and (17) the evolution of the discrete spectral data (14) from theorem 1.
Thus we have for the constraining measure

oA, t)=0(,0) t>0 27
and for the external field
O, t)=A+0Q(0,0) — mflx[kt + Q(A, 0)]. (28)

The latter follows since (see (14))

—11 (t)——lk t+—11 ——11 EN Mot
ogw; = ; ogw; 0 e N w .
N gWj.N N N N EWiN N g = N

After rescaling t — Nt this gives

1 1
I logw; y(Nt) = Ajnt+Qjn,0)+ NIOg wiy— Ojn,0)

1 N 1
N log;exp |:N <)»k,Nf + O (v, 0) + N logwi,nv — O Ak, 0))i| .

Letting N — oo and taking j(N) in such a way that A jx) v — A, we use the definition
of Q(A) (see (17)) and the discrete version of Laplace’s asymptotic formula to find

1 N
~ 1ogk2=;exp[1v(xk,,vt + Q. 0)] = max(Ar + Q(1,0)).

Thus, recalling again (17), we arrive at (28) in the continuum timescale.

5. The direct problem for the continuum limit

The direct spectral problem for the continuum limit is to find the spectral data (o, Q) if the
operator data a(x), b(x) (or e(x) = a(x) —2b(x) and B(x) = a(x)+2b(x)) are given. We can
solve the direct problem (under a rather strong restriction on the operator data) by combining
some known results.

The first step, the determination of the constraining measure o, follows from a result of
Kuijlaars and Van Assche [9]

Theorem 8. Suppose that a(x) and b(x) > 0 are continuous on (0, 1); then

1
o'(h) = / Oty s (1) dy (29)
0

where

1 1

S — A ,
W,p(A) =1 T /(x —a)(B —x) € p)

0 A ¢ (a, ).

We observe that theorem 8 does not contain any additional restriction on the operator data
a(x), b(x). However, for the second step (the determination of the external field Q) we use
a known result for some special class of operator data. Following Deift and McLaughlin [4],
we assume that the set

{x €[0,1]: 2 € [a(x), BT}
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is an interval for each A, which we denote by [x_ (1), x.(A)]
-V, x,(M)] = {x € [0, 1] : & € [a(x), BO)]}. (30)
Then the following result holds

Theorem 9 (see [8]). Suppose that the continuum operator data a(x), b(x) are such that (30)
holds. Then

7, (A) =/ ws, (A)dy
0

is a solution of the extremal problem (20), (21) with external field

—300) =2Ve, (M) — 2%, Yo = _/Ox logb(y)dy A€ a(x), B(x)] €Y
and in this case, equation (31) can be rewritten as
~10() =2 /0 " e sy (32)
where g(q,p1(A) is the Green function of the interval [, B]:
A—a r—a)?
8la.p1(A) = log T ( 5 > —1]. (33)

Thus formulae (29) and (32) give the solution of the direct problem.

6. Conclusions

The asymptotic theory of discrete orthogonal polynomials gives some ‘justification’ (of course
not fully rigorous and with some rather strong restrictions) for the following procedure of
integration of the system (7) with initial values a(x,0) = «(x) and B(x,0) = B(x) and
boundary values (0, ¢) = «(0, ¢) and B(1, 1) = (1, 1).

o Firstly, from the initial data o (x, 0) = a(x) and B(x, 0) = B(x), x € [0, 1], we obtain by
means of the formulae (29), (30), (32), (33) the spectral data at time t = 0:

1
o'() = / Ola(y), 1 (A) dy
0

x_(A)
oW = —2/0 8la(n.p1(A) dy

where
l; x e (o, B)
WiV = 1 T /& —a)(B—x) ’
0 A ¢ (a, B)

-, xs(M] ={x € [0, 1] : & € [a(x), BO)]}

A—a r—a\’
aplV) =log|—— + —1].
8le.pi(A) = log | — ( T >
e Next, we apply the evolution on the spectral data by means of formulae (27) and (28)
o(x,t) =0(A,0) t>0
O, 1) =At+Q(,0) — max[At + Q(4, 0]

up to time ¢ > 0.
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e Finally, using o (A, t) as the constraint and Q(A, ¢) as the external field in the extremal
problem of the logarithmic potential (20):

Wo(ty) = inf w.
o(T) B o)

=x, p<o

with

1
Wo = [ [ og —=—an)an) ~ [ 00 autr

we obtain the interval X, of the support of equilibrium for the potential of the extremal
measure 7, (see (21))

ZVx A € supp(o — T,)
Ve (W) — 300} =wn A € supp(o — 7)) Nsupp(t,) := I,
<Y A € supp(zy)
where
V.(z) = | lo dur).
1 (2) / g|z_k| n(r)

The extreme points of the interval

() = [a(x, 1), B(x,1)]

are the solution of the problem (7) at time ¢ > 0.

7. An example: Krawtchouk polynomials

Consider the initial data

a(x) = (1 —x)p+x(1—p)—2/p( - p)x(1 —x) (34)
Bx) =1 —x)p+x(l—p)+2/p(— px(l—x) (35)

where 0 < p < 1. When we plot both functions, we see that they are the lower part (o) and the
upper part (8) of an ellipse inscribed in the unit square [0, 1]%. If we take as discrete operator
data

apn =(N—=n)p+@n—1)(1-p) (36)
ban = /(N —n)kp(1 — p) 37)

then clearly

lim ap,Nn/N=1—-x)p+x(1 —p)

N—oo, n/N—x

lim b, n/N =+/p(l—p)x(1—x)

N—o0, n/N—x

which corresponds to the continuum operator data (34), (35). The discrete operator
data (36), (37) contain the recurrence coefficients of the orthonormal Krawtchouk polynomials
k, (X, p, N—1), which are orthonormal polynomials with respect to the binomial distribution on
{0,1,2,..., N—1}(see,e.g.,[6,9]). Therefore, after scaling, the spectrumisA; y = (j—1)/N
and the weights are

N-1\ . » .
wj’Nz(j—l)pj "a-pt j=1...,N.
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The direct spectral problem for the initial data is therefore easy in this case. We can now find
the evolution of the spectral data, which consists simply of replacing the parameter p by

t

pe
pe'+(1—p)

Observe that p(0) = p, lim,,» p(¢#) = 1, and lim,_, o, p(t) = 0. For the discrete system
this still gives Krawtchouk polynomials but now with parameter p(¢). The inverse spectral
problem is therefore also easy and gives the operator data (36), (37), but with parameter p(¢).
The continuum limit finally gives

alx, ) =1 =x)p@)+x(1 = p®) —2y/p@)(1 — p)x(1 —x)
Blx,1) = (1= x)p(t) +x(1 — p®) +2y/p@)(1 — p(D)x(1 —x).

One can indeed verify that they satisfy the system (7) with initial data (34), (35). The initial
ellipse rotates and, as t — 00, evolves to a straight line through the points (0, 1) and (1, 0).
As t — —oo the ellipse rotates in the anticlockwise direction and evolves to a straight line
through the points (0, 0) and (1, 1). In Maple code, one has

p() =

> alpha:=x->(1-x)*p+x* (1-p) -2*sqrt (p* (1-p) *x*(1-x)) ;
beta:=x->(1-x)*p+x* (1-p) +2*sqrt (p* (1-p) *x* (1-x)) ;

p:=2/5;

plot([alpha(x),beta(x)],x=0..1,color=[red,blue]);

This gives a plot of the initial ellipse, with p=0.4
pp:=t->p*exp(t)/(p*exp(t)+1-p);

Evolution of the parameter p
alpha:=(x,t)->(1-x)*pp(t)+x* (1-pp(t))-2*sqrt (pp(t)* (1-pp(t) ) *x*x(1-x));
beta:=(x,t)->(1-x) *pp (t) +x*x (1-pp(t) ) +2*sqrt (pp(t) * (1-pp (t) ) *x* (1-x)) ;
with(plots):

animate([alpha(x,t),beta(x,t)],x=0..1,t=0..8,color=red);

Evolution of the ellipses

m VvV VV VAV AV VYV

For this example we did not need to solve the constrained equilibrium problem with
external field, since everything was quite explicit here. This constrained equilibrium problem
for Krawtchouk polynomials was considered in detail by Dragnev and Saff [6] for the spectral
data, and by Kuijlaars and Van Assche (see section 4.4 on pp 186-8 of [9]) for the operator
data. The corresponding Toda lattice was also considered as an example by Kuijlaars and
McLaughlin [7].
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